
Maximum Entropy Classifier
&

Supervised Machine Learning
CSE538 - Spring 2025

Topics

● Supervised classification (open-vocabulary)

● Goal of logistic regression (aka Maximum Entropy Classifier)

● The “loss function” -- what logistic regression tries to optimize

● Logistic regression with multiple features

● How to evaluation: Training and test datasets

● Overfitting: role of regularization

Text Classification

I like the the movie. The movie is like terrible.

The Eagles win it!

Tariff delay as Trump and Trudeau reach deal

Twitter to be acquired by Apple

She will drive to the office, to make sure
the lawyer gives the will to the family.

will.n or will.v ?
noun verb _

Supervised Classification

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX
0
1
2
3
4

i

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX
0
1
2
3
4

i

Some function or rules
to go from X to Y, as
close as possible.

Supervised Classification

Supervised Machine Learning: Build a model with examples of

outcomes (i.e. Y) that one is trying to predict.

unsupervised machine learning: tries to learn with only an X).

Classification: The outcome (Y) is a discrete class.

for example: y ϵ {not-noun, noun}

y ϵ {noun, verb, adjective, adverb}

y ϵ {positive_sentiment, negative_sentiment}).

Classification as Producing a Probability

Binary classification goal: Build a "model" that can estimate P(A=1|B=?)

i.e. given B, yield (or “predict”) the probability that A=1

Binary classification goal: Build a “model” that can estimate P(A=1|B=?)

i.e. given B, yield (or “predict”) the probability that A=1

In machine learning, the tradition is to use Y for the variable being predicted and X
for the features use to make the prediction.

Classification as Producing a Probability

Binary classification goal: Build a “model” that can estimate P(Y=1|X=?)

i.e. given X, yield (or “predict”) the probability that Y=1

In machine learning, the tradition is to use Y for the variable being predicted and X
for the features use to make the prediction.

Classification as Producing a Probability

Binary classification goal: Build a “model” that can estimate P(Y=1|X=?)

i.e. given X, yield (or “predict”) the probability that Y=1

In machine learning, the tradition is to use Y for the variable being predicted and X
for the features use to make the prediction.

Example: Y: 1 if target is verb, 0 otherwise;
X: 1 if “was” occurs before target; 0 otherwise

I was reading for NLP. We were fine. I am good.

The cat was very happy. We enjoyed the reading material. I was good.

Classification as Producing a Probability

Binary classification goal: Build a “model” that can estimate P(Y=1|X=?)

i.e. given X, yield (or “predict”) the probability that Y=1

In machine learning, the tradition is to use Y for the variable being predicted and X
for the features use to make the prediction.

Example: Y: 1 if target is verb, 0 otherwise;
X: 1 if “was” occurs before target; 0 otherwise

I was reading for NLP. We were fine. I am good.

The cat was very happy. We enjoyed the reading material. I was good.

Classification as Producing a Probability

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

Classification as Producing a Probability

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

Classification as Producing a Probability

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x y

2 1

1 0

0 0

6 1

2 1

Classification as Producing a Probability

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x y

2 1

1 0

0 0

6 1

2 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x y

2 1

1 0

0 0

6 1

2 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

x y

2 1

1 0

0 0

6 1

2 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x y

2 1

1 0

0 0

6 1

2 1

1 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x y

2 1

1 0

0 0

6 1

2 1

1 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x y

2 1

1 0

0 0

6 1

2 1

1 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x y

2 1

1 0

0 0

6 1

2 1

1 1

Logistic Regression

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

x y

2 1

1 0

0 0

6 1

2 1

1 1

optimal b_0, b_1 changed!

Logistic Regression

x y

2 1

1 0

0 0

6 1

2 1

1 1

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X1: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

Logistic Regression

x2 x1 y

1 2 1

0 1 0

0 0 0

1 6 1

1 2 1

1 1 1

X2: does the target word start with a capital letter?Let’s add a feature!

Logistic Regression on features (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

m: number of features
 (columns of x)

Logistic Regression on features (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

m: number of features
 (columns of x)

Logistic Regression on features (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric.

Vector notation

𝛽 and xi are vectors of size m

first feature is intercept:
x*,0 = [1, 1…, 1]N

m: number of features
 (columns of x)

Yi ∊ {0, 1}; X can be anything numeric.

Goal: take in the variable x and
return a probability that Y is 1.

Logistic Regression on features (x)

Yi ∊ {0, 1}; X can be anything numeric.

Goal: take in the variable x and
return a probability that Y is 1.

Note that there are only two variables on the right: xi , 𝛽

Logistic Regression on features (x)

Yi ∊ {0, 1}; X can be anything numeric.

Goal: take in the variable x and
return a probability that Y is 1.

Note that there are only two variables on the right: xi , 𝛽

xi is given. 𝛽 must be learned.

Logistic Regression on features (x)

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only two variables on the right: xi , 𝛽

xi is given. 𝛽 must be learned.

Logistic Regression on features (x)

HOW? Try different 𝛽 values
until “best fit” to the training
data (example X and Y).

Yi ∊ {0, 1}; X can be anything numeric.

The goal of this function is to: take in the variable x and
return a probability that Y is 1.

Note that there are only two variables on the right: xi , 𝛽

xi is given. 𝛽 must be learned.

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

HOW? Try different 𝛽 values
until “best fit” to the training
data (example X and Y).

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” : whatever maximizes the likelihood function:

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, the number of examples.)

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, number of examples.) "log loss" or "normalized log loss":

“best fit” : more efficient to maximize log likelihood :

Maximum Entropy Classifier
&

Supervised Machine Learning
CSE538 - Spring 2025
Adithya V Ganesan

bit.ly/cse538sp25-211

http://bit.ly/cse538sp25-211

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX
0
1
2
3
4

i

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX
0
1
2
3
4

i

Some function or rules
to go from X to Y, as
close as possible.

Supervised Classification

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX
0
1
2
3
4

i

Some function or rules
to go from X to Y, as
close as possible.

Learn function or
rules to go from X to
Y, as close as
possible.

Yi ∊ {0, 1}; X can be anything numeric.

Goal: take in the variable x and
return a probability that Y is 1.

Logistic Regression on features (x)

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, number of examples.) "log loss" or "normalized log loss":

“best fit” : more efficient to maximize log likelihood :

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

“best fit” for neural networks: software designed to minimize rather than maximize
(typically, normalized by N, number of examples.) "log loss" or "normalized log loss":

“best fit” : more efficient to maximize log likelihood :

 "log loss" or "normalized log loss":

J(𝛽)

𝛽1

Gradient Descent

 "log loss" or "normalized log loss":

J(𝛽)

𝛽1

 "log loss" or "normalized log loss":

J(𝛽)

𝛽1
Update Step: βnew = βold - 𝞪 * grad

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Update Step: βnew = βold - 𝞪 * grad

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Update Step: βnew = βold - 𝞪 * grad
(Animation: Alec Radford, 2018)

Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function:

Update Step: βnew = βold - 𝞪 * grad

Demonstration of Logistic Regression with
Gradient Descent:
bit.ly/cse538sp25-logreg-numpy

http://bit.ly/cse538sp25-logreg-numpy

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

Y-axis is Y (i.e. 1 or 0)

To make room for
multiple Xs, let’s get rid
of y-axis. Instead, show
decision point.

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”? {0, 1}

We’re learning a linear (i.e. flat)
separating hyperplane, but fitting
it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

Logistic Regression

Yi ∊ {0, 1}; X can be anything numeric.

We’re still learning a linear
separating hyperplane, but
fitting it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

=0

Example: Y: 1 if target is a part of a proper noun, 0 otherwise;
X1: number of capital letters in target and surrounding words.

They attend Stony Brook University. Next to the brook Gandalf lay thinking.

The trail was very stony. Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

Logistic Regression

x2 x1 y

1 2 1

0 1 0

0 0 0

1 6 1

1 2 1

1 1 1

X2: does the target word start with a capital letter?Let’s add a feature!

Terminology

𝜷 ≈ weight ≈ coefficient ≈ parameters ≈ 𝛳

Logistic Regression ≈ Maximum Entropy Classifier

loss function ≈ cost function

Stochastic Gradient Descent ≈ Optimizer

PyTorch Intro: Logistic Regression

1. Tensors

PyTorch: 1. Tensors

(i.stack.imgur.com)

A multi-dimensional matrix

PyTorch: 1. Tensors

Note: Linguistic ambiguity:
Dimensions of a Tensor Dimensions of a Matrix(i.stack.imgur.com)

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

Why is it specifically called forward pass? Does it mean
there is a backward pass?
More on this in the Back Propagation lecture in Part 2.

PyTorch: 2. Numeric functions as a graph/network
(forward pass)

Efficient, high-level built-in linear algebra for neural network operations.

Can be conceptualized as a graph of
operations on tensors (matrices):

Sigmoid

PyTorch: 2. Numeric functions as a graph/network
(forward pass)

Efficient, high-level built-in linear algebra for neural network operations.

Can be conceptualized as a graph of
operations on tensors (matrices):

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input)
W = torch.random.randn(x.shape[1], 1) #weights
z = torch.matmul(x, beta)
yhat = nn.functional.sigmoid(z)

Sigmoid

PyTorch: 2. Numeric functions as a graph/network
(forward pass)

Efficient, high-level built-in linear algebra for neural network operations.

Can be conceptualized as a graph of
operations on tensors (matrices):

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input)
w = torch.random.randn(X.shape[1], 1) #weights
b = torch.random.randn(1, 1) #intercept
z = torch.matmul(x, w)
z += b
yhat = nn.functional.sigmoid(z)

(skymind, AI Wiki)

Sigmoid

PyTorch: 2. Numeric functions as a graph/network
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
 def __init__(self, num_feats,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1)

PyTorch: 2. Numeric functions as a graph/network
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
 def __init__(self, num_feats,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1)

The nn.Module class registers the weights and biases in

self.linear variable as Parameters of the model.

These weights and biases are stored as special tensors

called the nn.Parameters, which allow them to have

other member objects that support training of models.

PyTorch: 2. Numeric functions as a graph/network
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
 ...

 def forward(self, X):
 #This is where the model itself is defined.
 #For logistic regression the model takes in X and returns
 #the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
 z = self.linear(newX)
 return nn.functional.sigmoid(z)

#logistic function on the linear output

PyTorch: 2. Numeric functions as a graph/network
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
 def __init__(self, num_feats,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1)

 def forward(self, X):
 #This is where the model itself is defined.
 #For logistic regression the model takes in X and returns
 #the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1)
 #add intercept
 z = self.linear(newX)
 return nn.functional.sigmoid(z)

#logistic function on the linear output

PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

3. Loss function (training loop)

PyTorch: 3. Loss Function
(training loop)
 #runs the training loop of pytorch model:
 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 def loss_func(ypred, y):

return torch.mean(-torch.sum(y*torch.log(y_pred)))
+ torch.mean(-torch.sum((1-y)*torch.log(1-y_pred)))

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)
 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)
 loss.backward()
 sgd.step()
 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

PyTorch: 3. Loss Function
(training loop)
 #runs the training loop of pytorch model:
 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss() #computationally optimized for GPUs

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)
 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)
 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

3. Loss function (training loop)

4. Autograd (backward pass)

PyTorch: 3. Loss Function
(training loop)
 #runs the training loop of pytorch model:
 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss()

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)
 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)
 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

To Optimize Betas (all weights/parameters

within the neural net):

Stochastic Gradient Descent (SGD)

-- optimize over one sample each iteration

Mini-Batch SDG:

--optimize over b samples each iteration

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html

PyTorch: 4. Autograd
(backward pass)
 #runs the training loop of pytorch model:

 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss()

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)

 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)

 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

Calling loss.backward() will trigger the torch

autograd to traverse the submodules within

nn.Module class and compute the gradients.

The gradients wrt each parameter are stored

under .grad object of the nn.Parameters

type.

PyTorch: 4. Autograd
(backward pass)
 #runs the training loop of pytorch model:

 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss()

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)

 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)

 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

The optimizer object’s .step() uses the

gradients stored in model Parameters to

carry out the weight updates.

PyTorch: 4. Autograd
(backward pass)
 #runs the training loop of pytorch model:

 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss()

 #training loop:
 for i in range(epochs):
 model.train()

 sgd.zero_grad()
 #forward pass:
 ypred = model(X)

 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)

 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

The optimizer object’s .zero_grad() resets

the gradients to 0.

PyTorch: 4. Autograd
(backward pass)
 #runs the training loop of pytorch model:

 sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
 loss_func = torch.nn.BCELoss()

 #training loop:
 for i in range(epochs):
 model.train()
 sgd.zero_grad()
 #forward pass:
 ypred = model(X)

 loss = loss_func(ypred, y)
 #backward: /(applies gradient descent)

 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))

lo
ss

PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

 nn.module object maps X to y_pred

3. Loss function (training loop)

 loop that evaluates ypred versus y

4. Autograd (backward pass)

 torch computation that updates the parameters

Machine Learning: How to setup data

Data
Model

X Y

0
1
2
3
4
…

N

i

training

Machine Learning: How to setup data

Data
Model

X Y

0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

training

Machine Learning: How to setup data

Data

X Y

training
0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

“Corpus”

raw data:
sequences of

characters

Machine Learning: How to setup data

Data

X Y

training
0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

“Corpus”

raw data:
sequences of

characters

Feature Extraction

--pull out observations and
feature vector per observation.

Machine Learning: How to setup data

Data

X Y

training
0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

“Corpus”

raw data:
sequences of

characters

Feature Extraction

--pull out observations and
feature vector per observation.

e.g.: words, sentences,
documents, users.

Machine Learning: How to setup data

Data

X Y

training
0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not

--pull out observations and
feature vector per observation.

e.g.: words, sentences,
documents, users.

Machine Learning: How to setup data

Data

X Y

training
0.0 0
0.5 1
1.0 1
0.25 0
0.75 0
…

0.35 1

0
0
1
0
1
…

0

0
1
2
3
4
…

N

i

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

--pull out observations and
feature vector per observation.

e.g.: words, sentences,
documents, users.

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Feature example: is word present in document?
The book was interesting so I was happy .

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Feature example: is word present in document?
The book was interesting so I was happy .

[0, 1, 1, 0, 1, …, 1, 0, 1, 1, 0, 1, …,

1]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Feature example: is word present in document
The book was interesting so I was happy .

[0, 1, 1, 0, 1, …, 1, 0, 1, 1, 0, 1, …,

1]k

a sad

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Feature example: is previous word “the”?
The book was interesting so I was happy .

[0, 1, 1, 0, 1, …, 1, 0, 1, 1, 0, 1, …,

1]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

Multi-hot Encoding
● Each word gets an index in the vector
● 1 if present; 0 if not

Feature example: is previous word “the”?
The book was interesting so I was happy .

[0, 1, 1, 0, 1, …, 1, 0, 1, 1, 0, 1, …,

1]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

row of features; e.g.
➔ number of capital letters
➔ whether “I” was

mentioned or not
➔ k features indicating

whether k words were
mentioned or not

One-hot Encoding
● Each word gets an index in the vector
● All indices 0 except present word:

Feature example: is previous word “the”?
The book was interesting so I was happy .

[0, 1, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, …,

0]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

One-hot Encoding
● Each word gets an index in the vector
● All indices 0 except present word:

Feature example: which is previous word?
The book was interesting so I was happy .

[0, 1, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, …,

0]k

[0, 0, 1, 0, 0, …, 0, 0, 0, 0, 0, 0, …,

0]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

One-hot Encoding
● Each word gets an index in the vector
● All indices 0 except present word:

Feature example: which is previous word?
The book was interesting so I was happy .

[0, 1, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, …,

0]k

[0, 0, 1, 0, 0, …, 0, 0, 0, 0, 0, 0, …,

0]k

[0, 0, 0, 0, 1, …, 0, 0, 0, 0, 0, 0, …,

0]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

Multiple One-hot encodings for one observation
(1) word before; (2) word after

The book was interesting so I was happy .

[0, 0, 0, 0, 1, 0, …, 0]k [0, …, 0, 1, 0, …, 0]k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

Multiple One-hot encodings for one observation
(1) word before; (2) word after

The book was interesting so I was happy .

[0, 0, 0, 0, 1, 0, …, 0]k [0, …, 0, 1, 0, …, 0]k

=

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0]2k

Machine Learning: How to setup data

Data

X Y

“Corpus”

raw data:
sequences of

characters

Feature Extraction

Multiple One-hot encodings for one observation
(1) word before; (2) word after; (3) percent capitals

The book was Interesting so I was happy .

[0, 0, 0, 0, 1, 0, …, 0]k [0, …, 0, 1, 0, …, 0]k

=

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0]2k

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0,

0.09]2k+1

Machine Learning: How to setup data

Data
Model Does the

model hold up?

X Y

Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the
model hold up?

X Y

Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the
model hold up?

X Y

80%

20%

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

 x
1
 x

2
 ...

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

 x
1
 x

2
 ...

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

 x
1
 x

2
 ...

“overfitting”

Overfitting (1-d non-linear example)

Overfitting (1-d non-linear example)

Underfit

(image credit: Scikit-learn; in practice data are rarely this clear)

Overfitting (1-d non-linear example)

Underfit Overfit

(image credit: Scikit-learn; in practice data are rarely this clear)

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

 x
1
 x

2
 ...

“overfitting”

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0 0.6 1 0 0.25

0 0.5 0.3 0 0 0

0 0 1 1 1 0.5

0 0 0 0 1 1

0.25 1 1.25 1 0.1 2

 1.2 + -63*x
1
 + 179*x

2
 + 71*x

3
 + 18*x

4
 + -59*x

5
 + 19*x

6
 = logit(Y)

 x
1
 x

2
 ...

“overfitting”: generally
due to trying to fit too
many features given the
number of observations.

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0

0 0.5

0 0

0 0

0.25 1

What if only 2
predictors?

 x
1
 x

2

Logistic Regression - Regularization

1

1

0

0

1

X = Y
0.5 0

0 0.5

0 0

0 0

0.25 1

 0 + 2*x
1
 + 2*x

2

 = logit(Y)

What if only 2
predictors?
 A: better fit

 x
1
 x

2

Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data.

Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data.

Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data.

set betas that maximize L

Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data.

set betas that maximize penalized L

This is for likelihood

for log loss, would add the penalty

+

Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data.

set betas that maximize penalized L

Sometimes written as:

Logistic Regression - Regularization

L2 Regularization - “Ridge”
Shrinks features by adding values that keep from perfectly fitting the data.

set betas that maximize penalized L

Sometimes written as:

Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the
model hold up?

X Y

80%

20%

Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the
model hold up?

X Y

70%

10%

20%

Development

Set
penalty

Logistic Regression - Review

● Probabilistic Classification: P(Y | X)

● Learn logistic curve based on example data

○ training + development + testing data

● Set betas based on maximizing the likelihood
(or based on minimizing log loss)

○ “shifts” and “twists” the logistic curve

○ separation represented by hyperplane at 0.50

● Multivariate features: Multi-, One-hot encodings

● Overfitting and Regularization

Log Loss:

Multiclass Log Loss: ???

From binary to multiclass, Loss:

Log Loss:

Multiclass Log Loss: ??

From binary to multiclass, Loss:

class 1 ____class 0_______

Log Loss:

Multiclass Log Loss:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

Log Loss:

Multiclass Log Loss:

Equivalently:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

Log Loss:

Multiclass Log Loss:

Equivalently:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

Log Loss:

Multiclass Log Loss:

Equivalently:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

 def __init__(self, num_feats, num_classes,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(MultiClassLogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1 num_classes)

 def forward(self, X):
 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 #logistic function on the linear output:
 y_pred = 1/(1 + torch.exp(-self.linear(newX)))
 return y_pred

Log Loss:

Multiclass Log Loss:

Equivalently:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

 def __init__(self, num_feats, num_classes,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(MultiClassLogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1 num_classes)

 def forward(self, X):
 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 #logistic function on the linear output:
 y_pred = 1/(1 + torch.exp(-self.linear(newX)))
 return y_pred

not in prebuilt torch
function

Add i

Log Loss:

Multiclass Log Loss:

Equivalently:

From binary to multiclass, Loss:

V is classes

class 1 ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

 def __init__(self, num_feats, num_classes,
 learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(MultiClassLogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1 num_classes)

 def forward(self, X):
 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 #logistic function on the linear output:
 #y_pred = 1/(1 + torch.exp(-self.linear(newX)))
 y_pred = torch.log(1/(1 + torch.exp(-self.linear(newX))))
 #or simply: nn.log_softmax(self.linear(newX))
 return y_pred
…
loss_func = nn.NLLLoss()#expects log probabilities of each class

not in prebuilt torch
function

Two equivalent options for multi-class in torch:

option 1: NLLLoss (easier to understand functions)
#in model/forward:

 return nn.log_softmax(self.linear(newX)) #log softmax is multiclass

#in loss/train:
 loss_func = nn.NLLLoss() #negative log likelihood loss

option 2: CrossEntropyLoss (easier to code, obfuscates functions)
#in model/forward:

 return self.linear(newX) #only use linear if using cross-entropy loss

#in loss/train:
 loss_func = nn.CrossEntropyLoss() #includes log softmax

