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Topics

● Supervised classification (open-vocabulary)

● Goal of logistic regression (aka Maximum Entropy Classifier)

● The “loss function” -- what logistic regression tries to optimize

● Logistic regression with multiple features

● How to evaluation: Training and test datasets

● Overfitting: role of regularization



Text Classification

I like the the movie.              The movie is like terrible. 

The Eagles win it! 

Tariff delay as Trump and Trudeau reach deal

Twitter to be acquired by Apple

She will drive to the office, to make sure 
the lawyer gives the will to the family. 

will.n  or  will.v ?  
noun                  verb   _



Supervised Classification 



Supervised Classification 

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y



Supervised Classification 

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.

f(X) = Y

0.0
0.5
1.0

0.25
0.75

0
0
1
0
1

YX 
0
1
2
3
4

i



Supervised Classification 

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.
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Some function or rules 
to go from X to Y, as 
close as possible.  



Supervised Classification 

Supervised Machine Learning: Build a model with examples of 

outcomes (i.e. Y) that one is trying to predict. 

unsupervised machine learning:  tries to learn with only an X). 

Classification: The outcome (Y) is a discrete class. 

for example:  y ϵ {not-noun, noun}

y ϵ {noun, verb, adjective, adverb}

y ϵ  {positive_sentiment, negative_sentiment}).  



Classification as Producing a Probability

Binary classification goal: Build a "model" that can estimate P(A=1|B=?) 

i.e. given B, yield (or “predict”) the probability that A=1
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i.e. given X, yield (or “predict”) the probability that Y=1

In machine learning, the tradition is to use Y for the variable being predicted and X 
for the features use to make the prediction.

Example:   Y: 1 if target is verb, 0 otherwise; 
X: 1 if “was” occurs before target; 0 otherwise

I was reading for NLP.  We were fine. I am good.

The cat was very happy. We enjoyed the reading material.       I was good.
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Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X: number of capital letters in target and surrounding words. 

They attend Stony Brook University.     Next to the brook Gandalf lay thinking. 

The trail was very stony.     Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.
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optimal b_0, b_1 changed!



Logistic Regression
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Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X1: number of capital letters in target and surrounding words. 

They attend Stony Brook University.     Next to the brook Gandalf lay thinking. 

The trail was very stony.     Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.

Logistic Regression

x2 x1 y

1 2 1

0 1 0

0 0 0

1 6 1

1 2 1

1 1 1

X2: does the target word start with a capital letter?Let’s add a feature!
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Logistic Regression on features (x)

Yi ∊ {0, 1}; X is a single value and can be anything numeric. 

Vector notation

𝛽 and xi are vectors of size m

first feature is intercept:
x*,0 = [1, 1…, 1]N

m: number of features 
      (columns of x)



Yi ∊ {0, 1}; X can be anything numeric. 

Goal: take in the variable x and 
return a probability that Y is 1.
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data (example X and Y). 
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HOW? Try different 𝛽 values 
until “best fit” to the training 
data (example X and Y). 
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Supervised Classification 

X - features of N observations (i.e. words)
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Supervised Classification 

X - features of N observations (i.e. words)

Y - class of each of N observations

GOAL: Produce a model that outputs the most likely class yi, given features xi.
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Some function or rules 
to go from X to Y, as 
close as possible.  

Learn function or 
rules to go from X to 
Y, as close as 
possible.  



Yi ∊ {0, 1}; X can be anything numeric. 

Goal: take in the variable x and 
return a probability that Y is 1.

Logistic Regression on features (x)
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 "log loss" or "normalized log loss": 

J(𝛽)

𝛽1
Update Step: βnew = βold - 𝞪 * grad
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Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function: 

Update Step: βnew = βold - 𝞪 * grad
(Animation: Alec Radford, 2018)



Logistic Regression on a single feature (x)
“best fit” : whatever maximizes the likelihood function: 

Update Step: βnew = βold - 𝞪 * grad

Demonstration of Logistic Regression with 
Gradient Descent: 
bit.ly/cse538sp25-logreg-numpy

http://bit.ly/cse538sp25-logreg-numpy
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● Number of capital letters 
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”?  {0, 1}



X can be multiple features

Often we want to make a classification based on multiple features:

● Number of capital letters 
surrounding: integer

● Begins with capital letter: {0, 1}
● Preceded by “the”?  {0, 1}

Y-axis is Y (i.e. 1 or 0)

To make room for 
multiple Xs, let’s get rid 
of y-axis. Instead, show 
decision point.
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it to a logit outcome. 
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● Begins with capital letter: {0, 1}
● Preceded by “the”?  {0, 1}
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it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)



Logistic Regression

Yi ∊ {0, 1}; X can be anything numeric. 

We’re still learning a linear 
separating hyperplane, but 
fitting it to a logit outcome. 

(https://www.linkedin.com/pulse/predicting-outcomes-pr
obabilities-logistic-regression-konstantinidis/)

=0



Example:   Y: 1 if target is a part of a proper noun, 0 otherwise; 
X1: number of capital letters in target and surrounding words. 

They attend Stony Brook University.     Next to the brook Gandalf lay thinking. 

The trail was very stony.     Her degree is from SUNY Stony Brook.

The Taylor Series was first described by Brook Taylor, the mathematician.

They attend Binghamton.
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X2: does the target word start with a capital letter?Let’s add a feature!



Terminology

𝜷 ≈ weight ≈ coefficient ≈ parameters ≈ 𝛳

Logistic Regression ≈ Maximum Entropy Classifier

loss function ≈ cost function

Stochastic Gradient Descent ≈ Optimizer



PyTorch Intro: Logistic Regression

1. Tensors
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(i.stack.imgur.com)

A multi-dimensional matrix



PyTorch: 1. Tensors

Note: Linguistic ambiguity:
Dimensions of a Tensor       Dimensions of a Matrix(i.stack.imgur.com)

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar
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PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

Why is it specifically called forward pass? Does it mean 
there is a backward pass?
More on this in the Back Propagation lecture in Part 2.
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Efficient, high-level built-in linear algebra for neural network operations.

Can be conceptualized as a graph of 
operations on tensors (matrices): 

Sigmoid
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x = torch.Tensor(input)
W = torch.random.randn(x.shape[1], 1) #weights
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PyTorch: 2. Numeric functions as a graph/network 
(forward pass)

Efficient, high-level built-in linear algebra for neural network operations.

Can be conceptualized as a graph of 
operations on tensors (matrices): 

import torch
from torch import nn #predefined nodes

x = torch.Tensor(input)
w = torch.random.randn(X.shape[1], 1) #weights
b = torch.random.randn(1, 1) #intercept
z = torch.matmul(x, w)
z += b
yhat = nn.functional.sigmoid(z)

(skymind, AI Wiki)

Sigmoid



PyTorch: 2. Numeric functions as a graph/network 
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
    def __init__(self, num_feats, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(LogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1) 

    



PyTorch: 2. Numeric functions as a graph/network 
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
    def __init__(self, num_feats, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(LogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1) 

    

The nn.Module class registers the weights and biases in 

self.linear variable as Parameters of the model.

These weights and biases are stored as special tensors 

called the nn.Parameters, which allow them to have 

other member objects that support training of models. 



PyTorch: 2. Numeric functions as a graph/network 
(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
 ...

    def forward(self, X):
        #This is where the model itself is defined.
        #For logistic regression the model takes in X and returns
        #the results of a decision function

        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
        z = self.linear(newX)
        return nn.functional.sigmoid(z) 

#logistic function on the linear output
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(forward pass: defined in "forward" method of nn.Module)

class LogReg(nn.Module):
    def __init__(self, num_feats, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(LogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1) 

    def forward(self, X):
        #This is where the model itself is defined.
        #For logistic regression the model takes in X and returns
        #the results of a decision function

        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) 
                               #add intercept
        z = self.linear(newX)
        return nn.functional.sigmoid(z) 

#logistic function on the linear output
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1. Tensors

2. Numeric functions as a graph/network (forward pass)

3. Loss function (training loop)



PyTorch: 3. Loss Function 
(training loop)
    #runs the training loop of pytorch model:
    sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
    def loss_func(ypred, y): 

return torch.mean(-torch.sum(y*torch.log(y_pred))) 
+ torch.mean(-torch.sum((1-y)*torch.log(1-y_pred)))

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)
        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)
        loss.backward()
        sgd.step()
        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))



PyTorch: 3. Loss Function 
(training loop)
    #runs the training loop of pytorch model:
    sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
    loss_func = torch.nn.BCELoss() #computationally optimized for GPUs 

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)
        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)
        loss.backward()
        sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
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3. Loss function (training loop)

4. Autograd (backward pass)



PyTorch: 3. Loss Function 
(training loop)
    #runs the training loop of pytorch model:
    sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
    loss_func = torch.nn.BCELoss() 

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)
        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)
        loss.backward()
        sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

To Optimize Betas (all weights/parameters 

within the neural net): 

Stochastic Gradient Descent (SGD)

-- optimize over one sample each iteration

Mini-Batch SDG:

--optimize over b samples each iteration

https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html


PyTorch: 4. Autograd
(backward pass)
    #runs the training loop of pytorch model:

   sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
   loss_func = torch.nn.BCELoss() 

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)

        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)

     loss.backward()
     sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

Calling loss.backward() will trigger the torch 

autograd to traverse the submodules within 

nn.Module class and compute the gradients.

The gradients wrt each parameter are stored 

under .grad object of the nn.Parameters 

type.



PyTorch: 4. Autograd
(backward pass)
    #runs the training loop of pytorch model:

   sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
   loss_func = torch.nn.BCELoss() 

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)

        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)

     loss.backward()
     sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

The optimizer object’s .step() uses the 

gradients stored in model Parameters to 

carry out the weight updates. 
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(backward pass)
    #runs the training loop of pytorch model:

   sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
   loss_func = torch.nn.BCELoss() 

    #training loop:
    for i in range(epochs):
        model.train()

        sgd.zero_grad()
        #forward pass:
        ypred = model(X)

        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)

     loss.backward()
     sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

The optimizer object’s .zero_grad() resets 

the gradients to 0.



PyTorch: 4. Autograd
(backward pass)
    #runs the training loop of pytorch model:

   sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
   loss_func = torch.nn.BCELoss() 

    #training loop:
    for i in range(epochs):
        model.train()
        sgd.zero_grad()
        #forward pass:
        ypred = model(X)

        loss = loss_func(ypred, y)
        #backward: /(applies gradient descent)

     loss.backward()
     sgd.step()

        if i % 20 == 0:
            print("  epoch: %d, loss: %.5f" %(i, loss.item()))

lo
ss



PyTorch Intro: Logistic Regression

1. Tensors

2. Numeric functions as a graph/network (forward pass)

   nn.module object maps X to y_pred

3. Loss function (training loop)

   loop that evaluates ypred versus y

4. Autograd (backward pass)

   torch computation that updates the parameters
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One-hot Encoding
● Each word gets an index in the vector
● All indices 0 except present word: 

Feature example: which is previous word?
The  book  was  interesting  so  I  was  happy  . 

[0, 1, 0, 0, 0, …, 0, 0, 0, 0, 0, 0, …, 

0]k

[0, 0, 1, 0, 0, …, 0, 0, 0, 0, 0, 0, …, 
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Multiple One-hot encodings for one observation
(1) word before; (2) word after

The  book  was  interesting  so  I  was  happy  . 
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Machine Learning: How to setup data

Data

X     Y

“Corpus”

raw data:
sequences of 

characters

Feature Extraction

Multiple One-hot encodings for one observation
(1) word before; (2) word after; (3) percent capitals

The  book  was  Interesting  so  I  was  happy  . 

[0, 0, 0, 0, 1, 0, …, 0]k [0, …, 0, 1, 0, …, 0]k

=

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0]2k

[0, 0, 0, 0, 1, 0, …, 0, 0, …, 0, 1, 0, …, 0, 

0.09]2k+1
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   +   -59*x

5
  +   19*x

6  
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1
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               ...

“overfitting”: generally 
due to trying to fit too 
many features given the 
number of observations. 
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Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data. 

set betas that maximize penalized L

This is for likelihood

for log loss, would add the penalty

+



Logistic Regression - Regularization

L1 Regularization - “The Lasso”
Zeros out features by adding values that keep from perfectly fitting the data. 

set betas that maximize penalized L

Sometimes written as: 



Logistic Regression - Regularization

L2 Regularization - “Ridge”
Shrinks features by adding values that keep from perfectly fitting the data. 

set betas that maximize penalized L

Sometimes written as: 
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Machine Learning Goal: Generalize to new data

Training Data

Testing Data

Model Does the 
model hold up?
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Logistic Regression - Review

● Probabilistic Classification: P(Y | X)

● Learn logistic curve based on example data

○ training + development + testing data

● Set betas based on maximizing the likelihood 
(or based on minimizing log loss)

○ “shifts” and “twists” the logistic curve

○ separation represented by hyperplane at 0.50

● Multivariate features: Multi-, One-hot encodings

● Overfitting and Regularization
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Multiclass Log Loss:   

Equivalently:   

From binary to multiclass, Loss: 

V is classes

_class 1_     ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred)) 

    def __init__(self, num_feats, num_classes, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(MultiClassLogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1 num_classes) 

    def forward(self, X):
        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
        
        #logistic function on the linear output:
        y_pred = 1/(1 + torch.exp(-self.linear(newX))) 
        return y_pred
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Log Loss: 

Multiclass Log Loss:   

Equivalently:   

From binary to multiclass, Loss: 

V is classes

_class 1_     ____class 0_______

loss = torch.mean(-torch.sum(y*torch.log(y_pred)) 

    def __init__(self, num_feats, num_classes, 
                 learn_rate = 0.01, device = torch.device("cpu") ):
        #the constructor; define any layer objects (e.g. Linear)
        super(MultiClassLogReg, self).__init__()
        self.linear = nn.Linear(num_feats+1, 1 num_classes) 

    def forward(self, X):
        newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept
        
        #logistic function on the linear output:
        #y_pred = 1/(1 + torch.exp(-self.linear(newX))) 
        y_pred = torch.log(1/(1 + torch.exp(-self.linear(newX)))) 
                 #or simply: nn.log_softmax(self.linear(newX))
        return y_pred
…
loss_func = nn.NLLLoss()#expects log probabilities of each class

not in prebuilt torch 
function



Two equivalent options for multi-class in torch:

option 1: NLLLoss (easier to understand functions)
#in model/forward:

   return nn.log_softmax(self.linear(newX)) #log softmax is multiclass

#in loss/train: 
        loss_func = nn.NLLLoss() #negative log likelihood loss

option 2: CrossEntropyLoss (easier to code, obfuscates functions)
#in model/forward:

   return self.linear(newX) #only use linear if using cross-entropy loss

#in loss/train: 
        loss_func = nn.CrossEntropyLoss() #includes log softmax


